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Overview

Question: What is the expected in-sample and out-of-sample
Sharpe ratio for a trading strategy?

Proposition: Study a linear predictive model fit and tested on one
period (in-sample), and used to trade in another
period (out-of-sample)

Findings: We give analytic expressions for the expected
in-sample and out-of-sample Sharpe ratios, and find:

1. Higher model complexity inflates in-sample
Sharpe ratios

2. Low true Sharpe ratios are vulnerable to
overoptimism

3. Short backtests are insufficient to avoid
overfitting
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Motivation

Mclean and Pontiff [MP16]:

Portfolio returns are 26% lower out-of-sample and 58%
lower post-publication.

Falck, Rej, and Thesmar [FRT22]:

Published anomalies evaluated outside the data sample deliver
about 50% of in-sample performance.

Suhonen, Lennkh, and Perez [SLP17]:

We find a median Sharpe ratio (SR) of 1.20 across the 215
alternative beta strategies during their respective backtest pe-
riod, compared to 0.31 during live performance ... (a) 73%
median haircut.

i.e. Past performance does not guarantee future results.
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Sources of Disappointment

Excluding transaction costs and operational issues, two main
problems:

1. Alpha decay - your model was right, but now it’s wrong

2. Overfitting - your model was never right

2.1 Multiple testing
2.2 Parameter misestimation
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Overview

I Assume the Researcher fits and tests a linear model on a
historical period of length T1 yielding the in-sample Sharpe
ratio SRIS.

I What will the expected out-of-sample Sharpe ratio SROOS be
on a future period of length T2?
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Model Setup

Assume a linear prediction model

rt+1 = β st + εt+1 .

Returns ∈ Rm

OLS Param ∈ Rm×p

Signals ∈ Rp

Residuals ∈ Rm

If β was known, then one could form the portfolio wt = Σ−1ε βst,
which would have Sharpe ratio

SR =
E[wT

t rt+1]√
V[wT

t rt+1]
=

E
[
(Σ−1ε βst)

T(βst + εt+1)
]

√
V
[
(Σ−1ε βst)T(βst + εt+1)

] .
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The Perfect World

Let st ∼ N (0, Ip) and εt+1 ∼ N (0,Σε) be mutually independent
and IID sequences. Then the Sharpe ratio of the strategy is

SR =
tr(Γ)√

2 tr(Γ2) + tr(Γ)
,

where
Γ := βTΣ−1ε β.

Thus the Sharpe ratio is increasing in tr(Γ) and the ratio
tr(Γ2)/ tr(Γ).
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The Imperfect World

In reality, we need to estimate β. If we observe T1 samples of rt+1

and st then by OLS

β̂ = R S T(SST)−1 = β + E ST(SST)−1

Stacked returns ∈ Rm×T1

Stacked signals ∈ Rp×T1

Stacked residuals ∈ Rm×T1

And as E [E] = 0 =⇒ E
[
β̂
]
= β. Great!

So one can then form the portfolio ŵt = Σ−1ε β̂st and earn

P̂nLt = ŵT
t rt+1 per time step.
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Sample Sharpe Ratios

We can then compute the sample means and variances

Ê
[
(P̂nLt)t∈ T1

]
:=

1

T1

T1−1∑
t=0

P̂nLt,

V̂
[
(P̂nLt)t∈T1

]
:=

1

T1 − 1

T1−1∑
t=0

(
P̂nLt − Ê

[
(P̂nLt)t∈T1

])2

,

Historical Period

and these can be used then to estimate the in-sample Sharpe ratio
(and similarly the out-of-sample Sharpe ratio)

SRIS =
Ê
[
(P̂nLt)t∈T1

]
√

V̂
[
(P̂nLt)t∈T1

] , SROOS =
Ê
[
(P̂nLu)u∈T2

]
√
V̂
[
(P̂nLu)u∈ T2

] .
Future Period
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In-Sample P&L

Expanding out the sample P&L,

P̂nLt = (Σ−1ε β̂st)
T(βst + εt+1)

= (Σ−1ε βst)
Tβst + (Σ−1ε βst)

Tεt+1

+

(
Σ−1ε EST

(
SST

)−1
st

)T

βst

+

(
Σ−1ε EST

(
SST

)−1
st

)T

εt+1

Truth

Misestimation

Overfitting

Because when we look at the in-sample P&L,

E =
(
. . . εt+1 . . .

)
=⇒ E 6⊥⊥ εt+1.
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Out-of-Sample P&L

But, if we look at the out-of-sample P&L, we will have that E and
S are independent of the new realisations of the signals and the
residuals.

S ⊥⊥ su E ⊥⊥ εu+1 ⇐⇒ u /∈ T1

=⇒ Out-of-Sample Overfitting Disappointment

Q: How large is this difference?
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Expected Finite Sample Moments

Proposition
Given the previous setup, the expected in-sample and
out-of-sample mean are,

E

[
Ê
[(

P̂nLt

)
t∈T1

]]
= tr(Γ) +

pm

T1
, E

[
Ê
[(

P̂nLu

)
u∈T2

]]
= tr(Γ),

and the expected in-sample and out-of-sample variance are,

E

[
V̂
[(

P̂nLt

)
t∈T1

]]
≈ 2 tr(Γ2) + (c1 + c̃1) tr(Γ) + c2 + c̃2,

E

[
V̂
[(

P̂nLu

)
u∈T2

]]
= 2 tr(Γ2) + c1 tr(Γ) + c2,

where ci are some variables which increase with m, p and decrease
with T1.
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Approximations to the expected Sharpe ratios

We propose approximations to the expected in-sample Sharpe ratio
E[SRIS] and the expected out-of-sample Sharpe ratio E[SROOS]

E[SRIS] ≈ SREIS =

E
[
Ê
[
(P̂nLt)t∈T1

]]
√

E
[
V̂
[
(P̂nLt)t∈T1

]] ,

E[SROOS] ≈ SREOOS =

E
[
Ê
[
(P̂nLu)u∈T2

]]
√

E
[
V̂
[
(P̂nLu)u∈T2

]] ,

and we use these to study the replication ratio SREOOS
SREIS

.
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Simplest Case

What does this look like in the case where p = m = 1?

SREOOS

SREIS
=

β2

√
2β4 +

(
1 + 15

T1−2 −
2
T1

)
β2 + 4

T1
− 3

T1+2 −
1
T 2
1(

β2 + 1
T1

)√
2β4 +

(
1 + 2

T1−2

)
β2 + 1

T1−2

.
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Multiple Signals, Multiple Assets

How is the replication ratio affected by increasing the number of
assets m and signals p?
Example: 10 year backtest (2520 days) with in-sample SR 2.
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Literature Comparison - Kan, Wang, and Zheng

I If we don’t have a predictive model and instead just estimate
the drift and covariance of our assets, what is the replication
ratio? i.e. statically hold the portfolio w = Σ−1µ.

I Kan, Wang, and Zheng [KWZ22]: let the true SR be

θ = wTµ√
wTΣw

=
√

µTΣ−1µ, the authors compute the

expected in-sample SR E[θ̂] and out-of-sample SR E[θ̃].

16



Literature Comparison - Kan, Wang, and Zheng
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Similar haircuts when p = 1, but not exactly the same as dynamic
vs static.
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Commodity Futures

How does this work when our assumptions are violated?

I Using 12 commodity futures from 1998 to 2023 compute
rolling 5-day, 1-year and 5-year t-statistics as signals

I Fit an AR(1) model with t−distributed or Normally
distributed residuals:

rt+1 = βst + εt+1,

st = Φst−1 + ut,

I Simulate new samples using this model to check impact of
assumption violations
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Commodity Futures
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Normal or t distributed residuals.
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Commodity Futures
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Some Wisdom

Peter Muller (Founder, PDT Partners) [Mul01]:

In my opinion it is far better to refine an individual strat-
egy...than to attempt to put together lots of weaker strate-
gies...I would much rather have a single strategy with an ex-
pected Sharpe ratio of 2 than a strategy that has an expected
Sharpe ratio of 2.5 formed by putting together five supposedly
uncorrelated strategies each with an expected Sharpe ratio of
1.

Nick Patterson (RenTech) [Pat16]:

It’s funny that I think the most important thing to do in data
analysis is to do the simple things right. So, here’s a kind of
non-secret about what we did at Renaissance: in my opinion,
our most important statistical tool was simple regression with
one target and one independent variable.
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Conclusion

Common sense prevails:

1. Use the longest backtest you can

2. Don’t use too many signals

3. Don’t trust low Sharpe ratios (or too high Sharpe ratios!)

Good luck!
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