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Motivation

The Manager’s Dilemma

I Manager’s need to assess the strategies proposed to them for
allocation.

I The Sharpe ratio is by far the most popular metric for
measuring risk-adjusted returns [Ame+08].

I But how do we estimate the Sharpe ratio for a strategy?

Naive Approach: Blindly trust in-sample Sharpe ratios.
Slightly Better Approach: Apply a flat haircut to all Sharpe
ratios.
Much Better Approach: Use a model to estimate out-of-sample
Sharpe ratios.
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Why Backtests Disappoint

Why can we not simply take backtests
at face value?

I Transaction costs,

I Alpha decay,

I Statistical bias in estimation.

In-Sample

Pre-Pub

Post-Pub

1.2

0.9

0.6

Dataset: 206 predictors from [CZ22].

CAPM β: In-Sample 1929-1968, Pre-Pub 1968-1973, Post-Pub 1973-2024.
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Selection Bias

I How can we end up with bias in our backtests?

Strategy Filtering
Researchers Generate Strategies

Low Sharpe Ratio
Strategies Are
Filtered Out

Selection Biased
Strategies Remain

Strategy Iteration
Researcher Finds/Refines Strategy

Researcher Evaluates Strategy

Sharpe Ratio
Not Large
Enough

Overfit Strategy Accepted

Sharpe Ratio
Sufficiently Large
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The Issue With Multiple Testing

I Historically, this has been studied from
a multiple testing perspective [BL14;
HLZ16]. Tests

E
[m

a
x
(S

R
)]

Expected Maximum Sharpe

after N tests [BL14].

I However these approaches share a key problem:

The number
of tests conducted almost always goes untracked, or
unreported.

I Instead, we model why researchers conduct multiple tests: To
search for higher Sharpe ratios.
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Overview

Question: How do we estimate a Sharpe ratio, accounting for
selection bias?

Proposition: Use Bayesian methods to correct our Sharpe ratio
estimates under selection bias, and leverage a dataset
of observed in-sample and out-of-sample Sharpe
ratios to fit our priors.

Findings: This particularly improves estimates for short
backtests, and gives non-linear adjustments which
diminish for high Sharpe ratios.
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Related Work

Chen and Zimmermann [CZ20]:

I The authors model publication bias in econometrics
literature, looking at in-sample return only.

I Focuses on estimation without out-of-sample data.

Our Contribution:

I Seek the best Bayesian estimate for out-of-sample Sharpe
ratios.

I Utilise both in-sample and out-of-sample data to fit our
model.
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The Three Sharpe Ratios

I The In-Sample Sharpe ratio ŜR = µ̂
σ̂ is the Sharpe ratio you

observe in your backtest,

I The True Sharpe ratio SR = µ
σ is the unobserved population

Sharpe ratio for your strategy,

I The Out-of-Sample Sharpe ratio S̃R = µ̃
σ̃ is the Sharpe ratio

you’ll observe in live trading.
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How Selection Creates Bias

Imagine we have selected a strategy
based on a sample Sharpe ratio ŜR
which clears a minimum threshold κ.

SR κ

ŜR

The sample Sharpe ratio ŜR has been biased upwards from the
true value SR due to selection from a truncated distribution.

The out-of-sample Sharpe ratio will
be a new draw from the sampling
distribution, and will be less than
our threshold F

S̃R
(κ)% of the time.

SR κ

S̃R?

S̃R?

S̃R?
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The sample Sharpe ratio ŜR has been biased upwards from the
true value SR due to selection from a truncated distribution.

The out-of-sample Sharpe ratio will
be a new draw from the sampling
distribution, and will be less than
our threshold F

S̃R
(κ)% of the time.

SR κ

S̃R?

S̃R?

S̃R?

9



Sample Sharpe Ratio Distribution

I What is the sampling distribution of the Sharpe ratio?

I The sample Sharpe ratio is a scaled t-statistic, t =
√
T ŜR.

I Assuming the payoffs of the strategy are Normal, the sample

Sharpe ratio has distribution
√
T ŜR ∼ tT−1

(√
TSR

)
.

I Although Normality is a strong (wrong? [Con01]) assumption,
it’s useful and doesn’t hugely affect the results [Pav21].
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Truncated Sample Sharpe Ratio Distribution

I Taking into account a hard selection threshold, the truncated
distribution of the sample Sharpe ratio is given by

f
ŜR|ŜR>κ

(
ŜR | SR, T, κ

)
=
f

ŜR

(
ŜR | SR, T

)
1

ŜR>κ

1− F
ŜR

(
κ | SR, T

) ,

where f
ŜR

and F
ŜR

denote the original density and CDF of
the sample Sharpe ratio.

I We can then numerically compute the expected in-sample
Sharpe ratio ŜR given a true Sharpe ratio SR, threshold κ and
backtest length T .

I But if we take SR = 0, then we have a closed form result.
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Expected Bias When the True Sharpe is Zero

Proposition
Let SR = 0, then the expected sample Sharpe is given by,

E
[
ŜR
∣∣∣ ŜR > κ,SR = 0

]
=

U√
T

where

U = γ
T − 1

T − 2

(
1 +

T

T − 1
κ2
)−T−2

2

γ =
Γ
(

T
2

)
α0Γ

(
T−1
2

)√
(T − 1)π

, α0 = 1− Ft

(√
Tκ;T − 1

)
.
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Expected Bias Over True Sharpe Ratio

I Setting any threshold causes the expected in-sample Sharpe
ratio to be larger than zero.

−0.2 −0.1 0.0 0.1 0.2

κ

0.00

0.05

0.10

0.15

0.20

0.25
E

[Ŝ
R

]

Sharpe Ratio Increase

126

252

504

1260

T

Figure: Sharpe ratio inflation by κ and T . Values are in terms of daily
Sharpe ratios, and T is in days.
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But what is the truth?

In reality, the true SR is unknown, and we don’t know if our
threshold is above or below the truth.

κ

SR?

SR?SR?

So how could we estimate the true Sharpe, given an observed
sample Sharpe ratio and a threshold?

14



Bayes to the Rescue

We need:

I A prior for the Sharpe ratio p
(
SR | Θ

)
,

I An appropriate likelihood which is aware of the threshold bias

p
(

ŜR | SR, T̂ ,Θ, acc
)

.

We can then compute the posterior for the true Sharpe ratio,

p(SR | ŜR, T̂ ,Θ, acc) ∝ p
(
SR | Θ

)
p
(

ŜR | SR, T̂ ,Θ, acc
)
.
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Sharpe Prior

If the payoffs are Normal, then a Normal-Inverse-Gamma prior is
the natural choice for the variance and the Sharpe ratio, [Pav21]

σ2 ∼ Γ−1
(
m0

2
, σ20

m0

2

)
,

SR | σ2 ∼ N
(
µ0
σ
,

1

n0

)
,

which yields a marginal prior for the Sharpe ratio,

√
n0SR ∼ λ′

(√
n0SR0,m0

)
,

where λ′ denotes Lecoutre’s lambda prime distribution.1

1. The lambda prime distribution is related to the t distribution by their CDFs,
Fλ′(x; t, ν) = 1− Ft(t;x, ν).
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Bias Aware Likelihood

As in [CZ20] we extend to a soft rather than hard threshold,

pacc

(
x | κ, `

)
=

1

1 + exp(−`(x− κ))
,

and we already know the sample distribution of the Sharpe ratio,
p

ŜR
(ŜR | SR, T̂ ), so our likelihood is given by

p
(

ŜR | SR, T̂ ,Θ, acc
)

=
p

ŜR
(ŜR | SR, T̂ )pacc(ŜR | κ, `)

E
ŜR

[
pacc(ŜR | κ, `)

] .

We can now use our bias-aware posterior to recover the true
Sharpe ratio!
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ŜR
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Voila!

Given a sample Sharpe ratio, threshold, and backtest length we
can more accurately recover the true Sharpe ratio than a naive
approach:

−2 −1 0 1 2 3 4

SR

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Posteriors of True SR from Sample Payoffs
SR=1.00, κ = 2.00, T1 = 1260

Cond. Posteriors

Posteriors

Mean Cond. Posterior

Mean Posterior

True SR
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But What is Θ?

However, a problem remains: How do we pick Θ?

We propose using empirical Bayes to estimate the
hyperparameters. This has a few key advantages:

1. We “leverage” a dataset of observed in-sample and
out-of-sample Sharpe ratios to fit our parameters.

2. This enables us to correct for the selection bias, and also
improve performance estimates in a limited information
environment.

3. This is particularly useful for short backtests, where we have
limited information to accurately estimate the Sharpe ratio of
the strategy.
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Maximum Likelihood Estimation

I We can use maximum likelihood estimation to estimate the
parameters in Θ = {n0,m0,SR0, κ, `} from a dataset of
strategies.

I If we have a dataset of strategies, we likely have both
in-sample and out-of-sample performance for each strategy.

I We would like to use all the data available to us, so we need
the joint density of the in-sample and out-of-sample Sharpe
ratio for a singular strategy:

p
(

ŜRi, S̃Ri | T̂i, T̃i,Θ, acc
)

20



Joint Density of In-Sample and Out-of-Sample Sharpe Ratios

I To get the joint density of ŜR, S̃R we use the joint density of
µ̂, σ̂2, µ̃, σ̃2 and apply the necessary transform.

I The joint density of the sample means and variances is given
by,

p
(
µ̂, σ̂

2
, µ̃, σ̃

2 | T̂ , T̃ ,Θ, acc
)

=

OOS stats︷ ︸︸ ︷
q(µ̃, σ̃

2 | T̃ ,Θ1)

IS stats︷ ︸︸ ︷
q(µ̂, σ̂2 | T̂ ,Θ0)pacc(µ̂/σ̂ | κ, `)∫∞

0

∫∞
−∞ q(m, s2 | T̂ ,Θ0)pacc(m/s | κ, `) dm ds2

,

where q(x, y) is the joint likelihood of the sample mean and
variance given a Normal-Inverse-Gamma prior, which we have
marginalised out, and Θj refers to either the prior, or posterior
updated, parameters of the prior.

I The likelihoods of the out-of-sample and in-sample statistics
are not independent!
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Voila Encore!

I Using this likelihood to fit our parameters to a real dataset
provides a very good fit.

-1 0 1 2 3

Sharpe Ratio

0

1

2

3

4

D
en

si
ty

In-Sample and Out-of-Sample SR Fitted Densities

In-Sample

Out-of-Sample

Dataset: 206 predictors from [CZ22].
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Voila Encore!

And using the fitted model
we can compute confidence
intervals for the
out-of-sample performance
for each strategy.

-2 -1 0 1 2 3 4 5

Sharpe Ratio

Comparison of Sharpe Ratios with 95% CI

In-Sample

Out-of-Sample

Dataset: 206 predictors from [CZ22].
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Conclusion

1. We can fit a Bayesian model to a dataset of in-sample and
out-of-sample Sharpe ratios.

2. The model takes into account the selection criteria used to
choose strategies for trading.

3. And we can use this model to improve estimates of
out-of-sample performance of new candidate strategies!
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