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Overview

Question: How do we estimate a Sharpe ratio, accounting for
selection bias?

Proposition: Derive the posterior distribution for the Sharpe ratio
using a bias-adjusted likelihood, jointly fitting prior
hyperparameters to observed in-sample and
out-of-sample Sharpe ratios.

Findings: This particularly improves estimates for short
backtests, and gives non-linear adjustments which
diminish for high Sharpe ratios.
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Motivation

I Out-of-sample performance is
often worse than in-sample
performance. Why?
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Dataset: 206 predictors from [CZ22].

I One explanation: Multiple
testing inflates statistics, but
tracking the number of tests
(as required) is rarely
done [BL14; HLZ16]. Tests
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Expected Maximum Sharpe after N tests [BL14].

Instead, we model why researchers conduct multiple tests:
To search for higher Sharpe ratios.
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Related Work

Chen and Zimmermann [CZ20]:

I Adjusts in-sample return for publication bias

I Focuses on estimation without out-of-sample data

I Finds small publication bias relative to post-pub decay

Our Contribution:

I Seek the best Bayesian estimate for out-of-sample Sharpe
ratios

I Jointly fit hyperparameters to IS and OOS SRs

I Utilise a conditional likelihood for the observed sample
statistics
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Expected Bias With a Known True Sharpe

Imagine we have selected a strategy
based on a sample Sharpe ratio ŜR
which clears a minimum threshold θ.

SR θ

ŜR

The sample Sharpe ratio ŜR has been biased upwards from the
true value SR due to selection from a truncated distribution.
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Truncated Sample Sharpe Ratio Distribution

I The sample Sharpe ratio is a scaled t-statistic, t =
√
T ŜR.

I Assuming the payoffs of the strategy are Normal, the sample

Sharpe ratio has distribution
√
T ŜR ∼ tT−1

(√
TSR

)
.

The truncated distribution of the biased sample Sharpe ratio is
given by

f
ŜR|ŜR>θ

(
ŜR | SR, T, θ

)
=
f

ŜR

(
ŜR | SR, T

)
1

ŜR>θ

1− F
ŜR

(
θ | SR, T

) ,

where f
ŜR

and F
ŜR

denote the original density and CDF of the
sample Sharpe ratio.

6



Expected Bias When the True Sharpe is Zero

Proposition
Let SR = 0, then the expected sample Sharpe is given by,

E
[
ŜR
∣∣∣ ŜR > θ,SR = 0

]
=

U√
T

where

U = κ
T − 1
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, α0 = 1− Ft

(√
Tθ;T − 1

)
.
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Expected Bias Over True Sharpe Ratio
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Figure: Sharpe ratio inflation by θ and T . Values are in terms of daily
Sharpe ratios, and T is in days.
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But what is the truth?

In reality, the true SR is unknown, and we don’t know if our
threshold is above or below the truth.

θ

SR?

SR?SR?

So how could we estimate the true Sharpe, given an observed
sample Sharpe ratio and a threshold?
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Bayes to the Rescue

We need:

I A prior for the Sharpe ratio p
(
SR | Θ

)
,

I An appropriate likelihood which is aware of the threshold bias

p
(

ŜR | SR, T̂ ,Θ, acc
)

.

We can then compute the posterior for the true Sharpe ratio,

p(SR | ŜR, T̂ ,Θ, acc) ∝ p
(
SR | Θ

)
p
(

ŜR | SR, T̂ ,Θ, acc
)
.
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Sharpe Prior

If the payoffs are Normal, then a Normal-Inverse-Gamma prior is
the natural choice for the variance and the Sharpe ratio, [Pav21]

σ2 ∼ Γ−1
(
m0

2
, σ20

m0

2

)
,

SR | σ2 ∼ N
(
µ0
σ
,

1

n0

)
,

which yields a marginal prior for the Sharpe ratio,

√
n0SR ∼ λ′

(√
n0SR0,m0

)
,

where λ′ denotes Lecoultre’s lambda prime distribution.
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Bias Aware Likelihood

As in [CZ20] we extend to a soft rather than hard threshold,

pacc

(
x | κ, `

)
=

1

1 + exp(−`(x− κ))
,

and we already know the sample distribution of the Sharpe ratio,
p

ŜR
(ŜR | SR, T̂ ), so our likelihood is given by

p
(

ŜR | SR, T̂ ,Θ, acc
)

=
p

ŜR
(ŜR | SR, T̂ )pacc(ŜR | κ, `)

E
ŜR

[
pacc(ŜR | κ, `)

] .
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Voila!

We can therefore use a sample Sharpe ratio and a threshold to
recover the posterior for the true Sharpe ratio:
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But What is Θ?

However, a problem remains: How do we pick Θ?

We propose using empirical Bayes to estimate the
hyperparameters. This has a few key advantages:

1. We “leverage” a dataset of observed in-sample and
out-of-sample Sharpe ratios to fit our parameters.

2. This enables us to correct for the selection bias, and also
improve performance estimates in a limited information
environment.

3. This is particularly useful for short backtests, where we have
limited information to accurately estimate the Sharpe ratio of
the strategy.
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Maximum Likelihood Estimation

I We can use maximum likelihood estimation to estimate the
parameters in Θ = {n0,m0, µ0, σ0, κ, `} from a dataset of
strategies.

I If we have a dataset of strategies, we likely have both
in-sample and out-of-sample performance for each strategy.

I We would like to use all the data available to us, so we need
the joint density of the in-sample and out-of-sample Sharpe
ratio for a singular strategy:

p
(

ŜRi, S̃Ri | T̂i, T̃i,Θ, acc
)
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Joint Density of In-Sample and Out-of-Sample Sharpe Ratios

To get the joint density of ŜR, S̃R we use the joint density of
µ̂, σ̂2, µ̃, σ̃2 and apply the necessary transform.

The joint density of the latter is given by,

p
(
µ̂, σ̂

2
, µ̃, σ̃

2 | T̂ , T̃ ,Θ, acc
)

= q(µ̃, σ̃
2 | T̃ ,Θ1)

q(µ̂, σ̂2 | T̂ ,Θ0)pacc(µ̂/σ̂ | κ, `)∫∞
0

∫∞
−∞ q(m, s2 | T̂ ,Θ0)pacc(m/s | κ, `) dm ds2

,

where q(x, y) is the joint likelihood of the sample mean and
variance given a Normal-Inverse-Gamma prior, which we have
marginalised out, and Θj refers to either the prior, or posterior
updated, parameters of the prior.
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Voila Encore!

We can now fit our parameters to some dataset...
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Dataset: 206 predictors from [CZ22].
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Voila Encore!

...and use this to compute
confidence intervals for the
out-of-sample performance.

-2 -1 0 1 2 3 4 5

Sharpe Ratio

Comparison of Sharpe Ratios with 95% CI

In-Sample

Out-of-Sample

Dataset: 206 predictors from [CZ22].
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Conclusion

1. We can fit a Bayesian model to a dataset of in-sample and
out-of-sample Sharpe ratios.

2. The model takes into account the selection criteria used to
choose strategies for trading.

3. And we can use this model to improve estimates of
out-of-sample performance of new candidate strategies!
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